06348286901362a48fc46d93770ce8a34c4e5cfc
[dealii.wiki.git] / Gallery.md
1 # A gallery of nice pictures generated by deal.II
2
3 This page is a collection of images put here for mainly aesthetic reasons, and a little bit in order to
4 show what can be done with deal.II. Most of the pictures also contain a brief summary of what they show, in order to give an idea of the kind of problem they are meant to solve.
5
6 Feel free to add your own pictures here, but please add the name of the person who did the simulation -- others may be so excited by it that they would want to contact you!
7
8 ## Flow through the blades of a turbine
9
10
11 ## Flow through the blades of a turbine
12
13 <img width="400px" src="https://www.dealii.org/images/wiki/gallery/turbine.png" />
14
15 High-Reynolds number
16 computations lead to instationary solutions that are, however, often
17 enormously important in practice. This picture is by Manuel Quezada de
18 Luna (Texas A&M University) and was taken from a simulation of flow
19 between the blades of a compressor or turbine.
20
21
22 ## Complex geometries
23
24 <img width="400px" src="https://www.dealii.org/images/wiki/gallery/yuhan-1.png" />
25 <img width="400px" src="https://www.dealii.org/images/wiki/gallery/yuhan-2.png" />
26
27 These pictures are from a semester project by Yuhan Zhou at Texas A&M
28 University. The goal was to compute parasitic conducivities and impedances
29 from multilayer chip layouts. Other than generating data, this project also
30 produced a number of pretty pictures!
31
32
33
34 ## Thermally driven convection
35
36 <table>
37   <tr><td><img width="400px" src="https://www.dealii.org/images/wiki/gallery/Step-22.candles-1.png" /></td></tr>
38 </table>
39
40 The image shows results obtained with a variant of step-22 and step-31, tutorial programs that compute thermally driven convection with Stokes flow. The image shows three non-equidistantly spaced heat sources at the bottom and the flow field that emanates from the rising plumes of hot air.
41
42 The flow pattern becomes unstable at various times switching from one configuration to another. The full dynamics only really become visible when watching these images as a movie.
43 Several movies of various configurations are posted on Wolfgang Bangerth's webpage [https://www.math.colostate.edu/~bangerth/pictures.html#convection](https://dealii.org/developer/doxygen/deal.II/step_22.html]).
44
45
46 (Origin: Wolfgang Bangerth, December 2007)
47
48
49
50
51 ## Singular and Hypersingular Source Terms
52
53 <table>
54   <tr><td><img width="400px" src="https://www.dealii.org/images/wiki/gallery/Single_layer.jpeg" /></td><td><img width="400px" src="https://www.dealii.org/images/wiki/gallery/Double_layer.jpeg" /></td></tr>
55 </table>
56
57 These images show a Laplacian with singular and hypersingular right hand sides, supported on a
58 co-dimension one circle.
59
60 (Origin: Luca Heltai, 16 May 2007)
61
62
63 ## Topology Optimization
64
65 <img width="400px" src="https://www.dealii.org/images/wiki/gallery/Topopt1.png" />
66
67 These images result from a constrained topology optimization problem related to the minimization of steady state thermal compliance on a 2D square plate. The optimization is performed on a hierarchically adapted grid:
68 After completing optimization on a coarse grid level, the grid is adapted based on topology indicator derivatives and the optimization loop is restarted with interpolated topology indicator field on the (adaptively) refined grid as initial guess. The figure shows the global optimized topology and a selected zoomed part.
69
70 (Origin: Rohallah Tavakoli, 9 Feb. 2007)
71
72
73 ## Multiphase flow
74
75 <img width="200px" src="https://www.dealii.org/images/wiki/gallery/Random2d.png" />
76
77 This image shows the saturation at one time step of a simulation of how a mixture of two fluids moves through a random medium. The full description as well as movies of this problem and a 3d simulation can be found as step-21 in the tutorial of deal.II.
78
79 (Origin: Wolfgang Bangerth, 2006)
80
81
82 ## Phase change/crystal growth
83
84 <img width="200px" src="https://www.dealii.org/images/wiki/gallery/Gallery-dendrite1.jpg" />
85 <img width="200px" src="https://www.dealii.org/images/wiki/gallery/Gallery-dendrite2.jpg" />
86 <img width="200px" src="https://www.dealii.org/images/wiki/gallery/Gallery-dendrite3.jpg" />
87
88 Dendritic growth of crystals. (Origin: Denis Danilov)
89
90
91 <img width="400px" src="https://www.dealii.org/images/wiki/gallery/Gallery-Grain_growth.png" />
92
93 Phase field modeling of the normal grain growth.
94
95 -Slawa, 07:49, 6 September 2010 (UTC)
96
97
98
99
100 ## Incompressible Navier-Stokes
101
102 <img width="250px" src="https://www.dealii.org/images/wiki/gallery/Gallery-block100.jpg" />
103
104
105 <img width="250px" src="https://www.dealii.org/images/wiki/gallery/Gallery-backward_facing_step_01.jpg" />
106
107 The pressure of an incompressible flow around a backward facing step is visualized. The Reynolds number is 50. The question is, if the positive singularity (the left one, on the inflow side) is a real physical phenomenon. Indeed, it is numerically stable. (Andre Große-Wöhrmann, 2005)
108
109
110 ## Convection in the earth core
111
112 <img width="200px" src="https://www.dealii.org/images/wiki/gallery/Gallery-convection.png" />
113
114 Convection in itself is a hard problem (see the entry further up this page on thermally driven convection]](http://www.math.tamu.edu/~bangerth/pictures.html#optical].), but if it is between moving surfaces or with nonvertical gravity, it is even more challenging. This is what makes simulations of the earth's interior, both of the liquid rock earth mantle as well of the liquid metal outer core, so complicated. The picture to the right shows streamlines of a simulation of a convecting fluid in a radial gravity field between a hotter inner sphere and a cooler outer sphere, both of which are rotating and dragging the fluid along. Under such conditions, very complicated flow patterns develop after a while - among which are those that are responsible for the earth's magnetic field. (Origin: Andre Grosse-Woehrmann, 2005)
115
116
117 ## Solitons
118
119 The step-25 tutorial program demonstrates the solution of the nonlinear, wave equation-type sine-Gordon equation, from which the pictures here are taken. Full movies of these solutions can be found in the results section of that program as well.
120
121 (Origin: Ivan Christov, 2006)
122
123 <img width="180px" src="https://www.dealii.org/images/wiki/gallery/Gallery-step25-2.png" />
124 <img width="180px" src="https://www.dealii.org/images/wiki/gallery/Gallery-step25-3.png" />
125
126
127 ## Transport
128
129 <img width="200px" src="https://www.dealii.org/images/wiki/gallery/Gallery-transport_01.jpg" />
130
131 Modelling transport via the wavelike approach, numerical waves occur.
132 (Origin: Andre Große-Wöhrmann, 2005)
133
134
135
136 <img width="200px" src="https://www.dealii.org/images/wiki/gallery/Gallery-kpp.png" />
137
138 Modeling nonlinear transport equations is slightly more complicated since they can develop shocks even if the initial conditions are smooth. This isn't the case for the initial conditions that produced this solution of the KPP equations, but the difficulty of capturing the solution's features is still apparent.
139 (Origin: Orhan Mamedov, Vladimir Tomov, Abner Salgado, as part of a student project, 2011)
140
141
142 ## Fictitious Domain Method
143
144 <img width="200px" src="https://www.dealii.org/images/wiki/gallery/Gallery-fdm_stokes_01.jpg" />
145
146 This is the boundary supported fictitious domain method applied for the problem of Stokes.`You can see the pressure and the velocity field. The velocity is enforced on the circle via a weak condition. The key feature of this method is that this curve may be independent of the discretization mesh. (Origin: Andre Große-Wöhrmann, 2005)
147
148 <img width="200px" src="https://www.dealii.org/images/wiki/gallery/Gallery-fdm_potential_01.jpg" />
149
150 This is the boundary supported fictitious domain method applied to the potential equation. Again the curve may be independent of the mesh. Nevertheless the mesh is refined in the vicinity of the curve. (Origin: Andre Große-Wöhrmann, 2005)
151
152
153
154
155 ## Plastic and quasistatic deformation
156
157 <img width="400px" src="https://www.dealii.org/images/wiki/step-42.displacement.png" />
158
159 Deformation can be described in many ways. step-42 is a tutorial program
160 (written by Joerg Frohne, 2013) that deals with plasticity and the picture above
161 shows the displacement by pressing a printing letter in the shape of the
162 Chinese character for "force" into a metal block. (The displacement at every
163 node is exaggerated by a factor of 100.)
164
165 On the other hand, the images below correspond to the step-18 tutorial program. It shows the gradual deformation of a cylinder under
166 pressure from above, until it essentially fails. The color coding indicates
167 stress levels in the material. Because it looks nice, at the very bottom, there is also an isosurface view of the x-displacement early on in the simulation. More details
168 about this simulation can be found in the step-18
169 tutorial. (Origin: Wolfgang Bangerth, 2005)
170
171
172 <img width="300px" src="https://www.dealii.org/images/wiki/gallery/Solution-0010.0000.png" />
173
174
175 <img width="300px" src="https://www.dealii.org/images/wiki/gallery/Step-18-contours.png" />
176
177
178
179 ## Complicated domains
180
181 Here is an image of a mesh of a rather complicated domain. It shows a mesh created from CT data of the left lung (Origin: Li Pan, 2006)
182
183 <img width="300px" src="https://www.dealii.org/images/wiki/gallery/Left_lung.png" />
184
185
186
187 ## Crack propagation
188
189 Quasistatic crack propagation in brittle materials can be simulated using the energy principle, where a crack grows in the direction of maximal energy release. Here, the direction of the crack is computed by an asymptotic formula for the change of energy in two dimensions using (classical) stress intensity factors (linear elasticity). The crack is elongated step-by-step and the domain is remeshed in each step.
190
191 The pictures show crack paths in an orthotropic material with two axes of elastic symmetry in a compact-tension specimen. Both pictures show the crack under the same Mode-II shear loading, but with different orientation of the initial crack to the planes of elastic symmetry.
192
193 The third picture shows a crack propagating in an isotropic base material with an anisotropic local inhomogeneity. This numerical experiment demonstrates how a local perturbation in the material can influence a crack path.
194
195 <img width="600px" src="https://www.dealii.org/images/wiki/gallery/crack_propagation_cts-specimen_03.png" />
196
197
198
199 ## Fun pictures
200
201 <img width="150px" src="https://www.dealii.org/images/wiki/gallery/Gallery-rotation.jpg" />
202
203 When changing the numbering to something regular, some of the structures in DataOutRotation were forgotten. Instead of iso-surfaces symmetric to the center, we got this nice picture looking a bit like a complicated turbine. Guido Kanschat 08:10, 17 January 2006 (CET)
204
205 <img width="400px" src="https://www.dealii.org/images/wiki/gallery/Gallery-PacmanBenchmark.png" />
206
207 Poisson equation with homogeneous Dirichlet boundary conditions solved using Rvachev R-functions method combined with finite elements. Mesh is nonconforming, boundary conditions are enforced exactly. Pacman domain is considered as a benchmark because it contains curved parts as well as reentrant corner :)
208
209 For those who are interested to learn a bit about theory of R-functions, [here is a link](http://onlinelibrary.wiley.com/doi/10.1002/pamm.200701055/abstract) to my old 2-pages conference paper. More detailed  and extensive info in English is available at [Spatial Automation Lab](http://sal-cnc.me.wisc.edu/).
210
211 -Slawa, 07:21, 6 September 2010 (UTC)
212
213
214 <img width="200px" src="https://www.dealii.org/images/wiki/gallery/Gallery-Solidification-Tree.png" />
215
216 This had to be a simulation of directional solidification/dendritic growth. But something was wrong with the model and it produced such a nice tree in the end :)
217
218 -Slawa, 08:08, 6 September 2010 (UTC)

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.